Harmonic Filter for Microgrid Based on Extreme Learning Machine
نویسندگان
چکیده
منابع مشابه
Extreme learning machine based supervised subspace learning
This paper proposes a novel method for supervised subspace learning based on Single-hidden Layer Feedforward Neural networks. The proposed method calculates appropriate network target vectors by formulating a Bayesian model exploiting both the labeling information available for the training data and geometric properties of the training data, when represented in the feature space determined by t...
متن کاملParallel extreme learning machine for regression based on MapReduce
Regression is one of the most basic problems in data mining. For regression problem, extreme learning machine (ELM) can get better generalization performance at a much faster learning speed. However, the enlarging volume of datasets makes regression by ELM on very large scale datasets a challenging task. Through analyzing the mechanism of ELM algorithm, an efficient parallel ELM for regression ...
متن کاملKalman filter-based method for Online Sequential Extreme Learning Machine for regression problems
In this paper, a new sequential learning algorithm is constructed by combining the Online Sequential Extreme Learning Machine (OS-ELM) and Kalman filter regression. The Kalman Online Sequential Extreme Learning Machine (KOSELM) handles the problem of multicollinearity of the OS-ELM, which can generate poor predictions and unstable models. The KOSELM learns the training data one-by-one or chunk-...
متن کاملLeast-squares temporal difference learning based on extreme learning machine
This paper proposes a least-squares temporal difference (LSTD) algorithm based on extreme learning machine that uses a singlehidden layer feedforward network to approximate the value function. While LSTD is typically combined with local function approximators, the proposed approach uses a global approximator that allows better scalability properties. The results of the experiments carried out o...
متن کاملHierarchical extreme learning machine based reinforcement learning for goal localization
The objective of goal localization is to find the location of goals in noisy environments. Simple actions are performed to move the agent towards the goal. The goal detector should be capable of minimizing the error between the predicted locations and the true ones. Few regions need to be processed by the agent to reduce the computational effort and increase the speed of convergence. In this pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Engineering and Applied Sciences
سال: 2019
ISSN: 1816-949X
DOI: 10.36478/jeasci.2019.6385.6391